Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development.
نویسندگان
چکیده
Childhood spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by absent or deficient full-length survival motor neuron (SMN) protein. Clinical studies and animal models suggest that SMA is a developmental defect in neuromuscular interaction; however, the role of SMN in this process remains unclear. In the present study, we have determined the subcellular localization of SMN during retinoic-acid-induced neuronal differentiation of mouse embryonal teratocarcinoma P19 cells as well as in skeletal muscle during the critical period of neuromuscular maturation. We demonstrate, for the first time, SMN accumulation in growth-cone- and filopodia-like structures in both neuronal- and glial-like cells, identifying SMN as a new growth cone marker. Indeed, SMN was present at the leading edge of neurite outgrowths, suggesting that SMN may play a role in this process. In addition, SMN was detected as small dot-like particles within the cytoplasm of skeletal muscle during the first 2 weeks after birth, but their number peaked by P6. Intense SMN staining in neuromuscular junctions was observed throughout the entire postnatal period examined. Taken together, these results suggest that SMN may indeed fulfill neuronal- and muscle-specific functions, providing a more plausible mechanism explaining motor neuron degeneration and associated denervation atrophy of skeletal muscles in SMA. The primary SMA pathology most likely initiates in the peripheral axon--the result of deficient neurite outgrowth and/or neuromuscular maturation.
منابع مشابه
Regulation of Neuronal Differentiation by Proteins Associated with Nuclear Bodies
Nuclear bodies are large sub-nuclear structures composed of RNA and protein molecules. The Survival of Motor Neuron (SMN) protein localizes to Cajal bodies (CBs) and nuclear gems. Diminished cellular concentration of SMN is associated with the neurodegenerative disease Spinal Muscular Atrophy (SMA). How nuclear body architecture and its structural components influence neuronal differentiation r...
متن کاملDilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy.
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of th...
متن کاملNeuronal-specific roles of the survival motor neuron protein: evidence from survival motor neuron expression patterns in the developing human central nervous system.
Despite recent data on the cellular function of the survival motor neuron (SMN) gene, the spinal muscular atrophy (SMA) disease gene, the role of the SMN protein in motor neurons and hence in the pathogenesis of SMA is still unclear. The spatial and temporal expression of SMN in neurons, particularly during development, could help in verifying the hypotheses on the SMN protein functions so far ...
متن کاملChondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy.
Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron p...
متن کاملInvestigations of Curcumin and Resveratrol on Neurite Outgrowth: Perspectives on Spinal Muscular Atrophy
Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease with progressive muscle weakness and atrophy. SMA is caused by low levels of the Survival of Motor Neuron (SMN) protein, which also leads to neurite outgrowth defects in neuronal cells. Rescue of the outgrowth defect is thought to be a strategy for SMA treatment. Polyphenolic histone deacetylase (HDAC) inhibitors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 11 14 شماره
صفحات -
تاریخ انتشار 2002